Banner
References
Longevità & dieta mima-digiuno
published in January - March 2021 - Sport&Medicina - issue n.1

There are no translations available.

Bibliografia

  1. Eluamai A, Brooks K. Effect of aerobic exercise on mitochondrial DNA and aging. J Exerc Sci Fitn 2013; 11(1): 1-5.
  2. Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol 2016; 101(1): 17-22.
  3. WHO. Physical Activity and Adults. Disponibile in: https://www.who.int/dietphysicalactivity/factsheet_adults/en/. Consultato il 27 luglio 2020.
  4. ACSM. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 2009; 41: 687-8.
  5. Austin S, St-Pierre J. PGC1α and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 2012; 125(Pt 21): 4963-71.
  6. Everitt AV, Heilbronn LK, Le Couteur DG. Food intake, life style, aging and human longevity. In: Everitt A, Rattan S, le Couteur D, de Cabo R (eds). Calorie restriction, aging and longevity. Dordrecht: Springer, 2010.
  7. Schäfer D. Aging, longevity, and diet: historical remarks on calorie intake reduction. Gerontol 2005; 51(2): 126-30.
  8. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size: one figure. J Nutr 1935; 10(1): 63-79.
  9. Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012; 2012: 646354.
  10. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996; 273(5271): 59-63.
  11. Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994; 74(1-2): 121-33
  12. Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev 1994;76(2-3):215-24.
  13. Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 2010; 45(6): 410-8.
  14. Masoro EJ. Role of hormesis in life extension by caloric restriction. Dose Response 2006; 5(2): 163-73.
  15. Jane L, Atkinson G,Victoria Jaim V, et al. Intermittent fasting interventions for the treatment of overweight and obesity in adults aged 18 years and over: a systematic review protocol. JBI Database of Systematic Reviews and Implementation Reports 2015; 13(10): 60-8.
  16. Rynders CA, Thomas EA, Zaman A, et al. Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients 2019; 11(10):2442.
  17. Nunn AV, Guy GW, Brodie JS, Bell JD. Inflammatory modulation of exercise salience: using hormesis to return to a healthy lifestyle. Nutr Metab (Lond) 2010; 7: 87.
  18. Hall KD, Kahan S. Maintenance of lost weight and long-term management of obesity. Med Clin North Am 2018; 102(1): 183-97.
  19. Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field. Aging Cell 2006; 5(2): 97-108.
  20. Shintani H, Shintani T, Ashida H, Sato M. Calorie restriction mimetics: upstream-type compounds for modulating glucose metabolism. Nutrients 2018; 10(12):1821.
  21. Hardie DG. Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr 2011; 93(4): 891S-6.
  22. Gillespie ZE, Pickering J, Eskiw CH. Better living through chemistry: caloric restriction (CR) and CR mimetics alter genome function to promote increased health and lifespan. Front Genet 2016; 7: 142.
  23. Mariño G, Pietrocola F, Madeo F, Kroemer G. Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers. Autophagy 2014; 10(11): 1879-82.
  24. Wang YW, He SJ, Feng X, et al. Metformin: a review of its potential indications. Drug Des Devel Ther 2017; 11: 2421-9.
  25. Shi W, Li L, Ding Y, et al. The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Med Chem 2018; 10(7): 795-809.
  26. Barger JL. An adipocentric perspective of resveratrol as a calorie restriction mimetic. Ann N Y Acad Sci 2013;1290:122-9.
  27. Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 2005; 280(17): 17038-45.
  28. Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity. Nutrients 2016; 8(3): 167.
  29. Palaniappan AR, Dai A. Mitochondrial ageing and the beneficial role of alpha-lipoic acid. Neurochem Res 2007; 32(9): 1552-8.
  30. Akbari M, Ostadmohammadi V, Lankarani KB, et al. The effects of alpha-lipoic acid supplementation on glucose control and lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Metabolism 2018; 87: 56-69.
  31. Sinclair DA, Guarente L. Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol 2014; 54: 363-80.
  32. Ingram DK, Roth GS. Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev 2015; 20: 46-62.
  33. Hutfles LJ, Wilkins HM, Koppel SJ, et al. A bioenergetics systems evaluation of ketogenic diet liver effects. Appl Physiol Nutr Metab 2017; 42(9): 955-62.
  34. Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J, Bergersen LH. A ketogenic Diet Improves Mitochondrial Biogenesis and Bioenergetics via the PGC1α-SIRT3-UCP2 axis. Neurochem Res 2019; 44(1): 22-37.
  35. Parry HA, Kephart WC, Mumford PW, et al. Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats. Heliyon 2018; 4(11): e00975.
  36. Cannataro R, Perri M, Gallelli L, et al. Ketogenic diet acts on body remodeling and microRNAs expression profile. Microrna 2019; 8(2) :116-26.
  37. Rosenbaum M, Hall KD, Guo J, et al. Glucose and lipid homeostasis and inflammation in humans following an isocaloric ketogenic diet. Obesity (Silver Spring) 2019; 27(6): 971-81.