Banner
References
Microbiota, virus & life style
published in July - September 2020 - Sport&Medicina - issue n.3

There are no translations available.

Bibliografia

  1. Capurso L. Il microbiota intestinale. Recenti Prog Med 2016; 107: 257-66.
  2. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486(7402): 222-7.
  3. Knoll AH. Lynn Margulis, 1938-2011. Proc Natl Acad Sci USA 2012; 109(4): 1022.
  4. Sleator RD. The human superorganism - Of microbes and men. Med Hypotheses 2010; 74(2): 214-5.
  5. Moustafa A, Xie C, Kirkness E, et al. The blood DNA virome in 8,000 humans. PLoS Pathog 2017; 13(3): e1006292.
  6. Robinson CM, Pfeiffer JK. Viruses and the microbiota. Annu Rev Virol 2014; 1: 55-69.
  7. Minot S, Bryson A, Chehoud C, et al. Rapid evolution of the human gut virome. Proc Natl Acad Sci USA 2013; 110(30): 12450-5.
  8. Hoyles L, McCartney AL, Neve H, et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res Microbiol 2014; 165(10): 803-12.
  9. Bernardin F, Operskalski E, Busch M, Delwart E. Transfusion transmission of highly prevalent commensal human viruses. Transfusion 2010; 50(11): 2474-83.
  10. Li N, Ma WT, Pang M, Fan QL, Hua JL. The commensal microbiota and viral infection: a comprehensive review. Front Immunol 2019; 10: 1551.
  11. Braciale TJ, Hahn YS. Immunity to viruses. Immunol Rev 2013; 255(1): 5‐12.
  12. Kohl C, Brinkmann A, Dabrowski PW, et al. Protocol for metagenomic virus detection in clinical specimens. Emerg Infect Dis 2015; 21(1): 48‐57.
  13. Nelson MT, Pope CE, Marsh RL, et al. Human and extracellular DNA depletion for metagenomic analysis of complex clinical infection samples yields optimized viable microbiome profiles. Cell Rep 2019; 26(8): 2227‐40.
  14. Mavrich TN, Casey E, Oliveira J, et al. Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Sci Rep 2018; 8(1): 12772.
  15. Erickson AK, Jesudhasan PR, Mayer MJ, et al. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host Microbe 2018; 23(1): 77‐88.
  16. Wilen CB, Lee S, Hsieh LL, et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 2018; 360(6385): 204‐8.
  17. von Moltke J, Ji M, Liang HE, Locksley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 2016; 529(7585): 221‐5.
  18. Kuss SK, Best GT, Etheredge CA, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 2011; 334(6053): 249‐52.
  19. Robinson CM, Jesudhasan PR, Pfeiffer JK. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 2014; 15(1): 36‐46.
  20. Berger AK, Yi H, Kearns DB, Mainou BA. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. PLoS Pathog 2017; 13(12): e1006768.
  21. Gorres KL, Daigle D, Mohanram S, Miller G. Activation and repression of Epstein-Barr Virus and Kaposi's sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J Virol 2014; 88(14): 8028‐44.
  22. Jones MK, Watanabe M, Zhu S, et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 2014; 346(6210): 755‐9.
  23. Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science 2011; 334(6053): 245‐9.
  24. Jude BA, Pobezinskaya Y, Bishop J, et al. Subversion of the innate immune system by a retrovirus. Nat Immunol 2003; 4(6): 573‐8.
  25. Wilks J, Lien E, Jacobson AN, et al. Mammalian lipopolysaccharide receptors incorporated into the retroviral envelope augment virus transmission. Cell Host Microbe 2015; 18(4): 456-62.
  26. Baldridge MT, Nice TJ, McCune BT, et al. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 2015; 347(6219): 266‐9.
  27. Uchiyama R, Chassaing B, Zhang B, Gewirtz AT. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J Infect Dis 2014; 210(2): 171‐82.
  28. Young GR, Eksmond U, Salcedo R, et al. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 2012; 491(7426): 774-8.
  29. Botić T, Klingberg TD, Weingartl H, Cencic A. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. Int J Food Microbiol 2007; 115(2): 227‐34.
  30. Wang Z, Chai W, Burwinkel M, et al. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro. PLoS One 2013; 8(1): e53043.
  31. Bandoro C, Runstadler JA. Bacterial lipopolysaccharide destabilizes influenza viruses. mSphere 2017; 2(5):e00267-17.
  32. Chen HW, Liu PF, Liu YT, et al. Nasal commensal Staphylococcus epidermidis counteracts influenza virus. Sci Rep 2016; 6: 27870.
  33. Tuyama AC, Cheshenko N, Carlucci MJ, et al. ACIDFORM inactivates herpes simplex virus and prevents genital herpes in a mouse model: optimal candidate for microbicide combinations. J Infect Dis 2006; 194(6): 795‐803.
  34. Conti C, Malacrino C, Mastromarino P. Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. J Physiol Pharmacol 2009; 60 Suppl 6: 19‐26.
  35. Mastromarino P, Cacciotti F, Masci A, Mosca L. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: role of cell wall associated components. Anaerobe 2011; 17(6): 334‐6.
  36. Roth AN, Grau KR, Karst SM. Diverse mechanisms underlie enhancement of enteric viruses by the mammalian intestinal microbiota. Viruses 2019; 11(8): 760.
  37. Steed AL, Christophi GP, Kaiko GE, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 2017; 357(6350): 498‐502.
  38. Yitbarek A, Alkie T, Taha-Abdelaziz K, et al. Gut microbiota modulates type I interferon and antibody-mediated immune responses in chickens infected with influenza virus subtype H9N2. Benef Microbes. 2018; 9(3): 417‐27.
  39. Hensley-McBain T, Zevin AS, Manuzak J, et al. Effects of fecal microbial transplantation on microbiome and immunity in simian immunodeficiency virus-infected macaques. J Virol 2016; 90(10): 4981‐9.
  40. Abt MC, Osborne LC, Monticelli LA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012; 37(1): 158‐70.
  41. Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A. 2011; 108(13): 5354‐59.
  42. Oh JE, Kim BC, Chang DH, et al. Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proc Natl Acad Sci U S A 2016; 113(6): E762‐E771.
  43. Gonzalez-Perez G, Lamousé-Smith ES. Gastrointestinal microbiome dysbiosis in infant mice alters peripheral CD8+ T cell receptor signaling. Front Immunol 2017; 8: 265.
  44. Wang Z, MacLeod DT, Di Nardo A. Commensal bacteria lipoteichoic acid increases skin mast cell antimicrobial activity against vaccinia viruses. J Immunol 2012; 189(4): 1551‐8.
  45. Gonzalez-Perez G, Hicks AL, Tekieli TM, et al. Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. J Immunol 2016; 196(9): 3768‐79.
  46. Rosshart SP, Vassallo BG, Angeletti D, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 2017; 171(5): 1015-28.e13.
  47. Ahmed R. Immunological tolerance in viral infections. In: Notkins AL, Oldstone MBA (eds). Concepts in Viral Pathogenesis III. New York, NY: Springer, 1989.
  48. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727‐33.
  49. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020; 25(3): 2000045.
  50. Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348(20): 1967‐76.
  51. Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses - A statement of the Coronavirus Study Group. Nature Microbiology 2020; 5: 536-44.
  52. Heymann DL, Shindo N; WHO Scientific and Technical Advisory Group for Infectious Hazards. COVID-19: what is next for public health?. Lancet 2020; 395(10224): 542‐5.
  53. WHO pandemic statement. https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic.Visited on April 8th, 2020.
  54. Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
  55. Dudley JP, Lee NT. Disparities in age-specific morbidity and mortality from SARS-COV-2 in China and the Republic of Korea. Clin Infect Dis 2020; 71(15): 863-5.
  56. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020; 323(16): 1574‐81.
  57. Zhao J, Yang Y, Huang H, , et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. medRxiv 2020.03.11.20031096.
  58. Paulo AC, Correia-Neves M, Domingos T, Murta AG, Pedrosa J. Influenza infectious dose may explain the high mortality of the second and third wave of 1918-1919 influenza pandemic. PLoS One 2010; 5(7): e11655.
  59. Indolfi C, Spaccarotella C, 2020. The Outbreak of COVID-19 in Italy: fighting the pandemic. JACC Case reports 2020; 2: 1414-18.
  60. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (1985) 2005; 98(4): 1154-62.
  61. Pedersen BK. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control, Essays Biochem 2006; 42:105-17.
  62. Pedersen BK, Saltin, B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Scie Sports 2015; 25 Suppl 3: 1-72.
  63. Nieman DC. Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc 1994; 26(2):128‐39.
  64. Monda V, Villano I, Messina A, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev 2017; 2017: 3831972.
  65. Riebe D, Ehrman JK, Liguori G, Magal M; American College of Sports Medicine, ACSM’s Guidelines for Exercise Testing and Prescription. 10th. Philadelphia: Lippincott Williams & Wilkins, 2017.
  66. Grande AJ, Keogh J, Silva V, Scott AM. Exercise versus no exercise for the occurrence, severity, and duration of acute respiratory infections. Cochrane Database Syst Rev 2020; 4(4): CD010596.
  67. Gleeson M, McDonald WA, Pyne DB, et al. Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc 1999; 31(1): 67‐73.
  68. Nehlsen-Cannarella SL, Nieman DC, Fagoaga OR, et al. Saliva immunoglobulins in elite women rowers. Eur J Appl Physiol 2000; 81(3): 222‐8.
  69. Peters EM. Exercise, immunology and upper respiratory tract infections. Int J Sports Med 1997;18 Suppl 1: S69‐S77.
  70. Tellier R. Review of aerosol transmission of influenza A virus. Emerg Infect Dis 2006; 12(11): 1657-62.
  71. World Health Organization. Global Recommendations on Physical Activity for Health. Geneva: World Health Organization, 2010.
  72. Dorneles GP, Dos Passos AAZ, Romão PRT, Peres A. New insights about regulatory t cells distribution and function with exercise: the role of immunometabolism. Curr Pharm Des 2020; 26(9): 979‐90.
  73. Campbell JP, Turner JE. Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol 2018; 9: 648.
  74. Yan Z, Spaulding HR. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol 2020; 32: 10150 8.